

Cambridge International AS & A Level

CANDIDATE
NAME

CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

CHEMISTRY

9701/22

Paper 2 AS Level Structured Questions

February/March 2024

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

This document has **16** pages. Any blank pages are indicated.

1 Bismuth is an element in Group 15 of the Periodic Table.

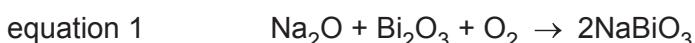
(a) Bismuth has metallic bonding.

Draw a labelled diagram to show the metallic bonding in bismuth.

[1]

(b) Bismuth reduces water to form bismuth oxide, Bi_2O_3 . A colourless gas that ignites with a squeaky pop also forms.

(i) Construct an equation for the reduction of water by bismuth.


..... [1]

(ii) Bi_2O_3 is a yellow insoluble solid that melts at 1090K. The molten compound conducts electricity.

Deduce the structure and bonding of Bi_2O_3 . Explain your answer.

.....
.....
..... [2]

(c) Bi_2O_3 can be used to form NaBiO_3 , as shown in equation 1.

(i) Deduce the oxidation number of Bi in Bi_2O_3 and in NaBiO_3 .

oxidation number of Bi:

in Bi_2O_3 in NaBiO_3 [1]

(ii) Identify the reducing agent in equation 1.

..... [1]

(d) NaBiO_3 is an oxidising agent with similar properties to KMnO_4 .

Fig. 1.1 shows an example of the use of NaBiO_3 as an oxidising agent.

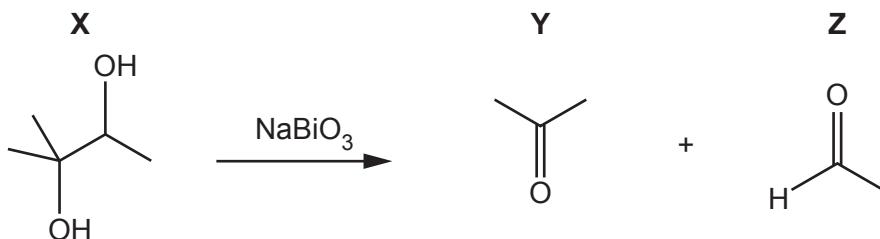


Fig. 1.1

(i) Explain the term oxidising agent.

..... [1]

(ii) Compound **X** forms when methylbut-2-ene reacts with KMnO_4 .

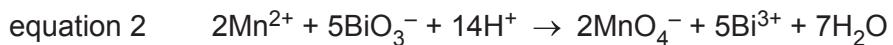
State the essential conditions for this reaction.

..... [1]

(iii) Complete Table 1.1 to show what is observed when compounds **Y** and **Z** react separately with the named reagents.

Table 1.1

reagent	observation with Y	observation with Z
$\text{Na}_2\text{CO}_3\text{(aq)}$	no reaction	
alkaline $\text{I}_2\text{(aq)}$		
2,4-dinitrophenylhydrazine (2,4-DNPH)		
Tollens' reagent		


[4]

(iv) Construct an equation for the reaction of **Z** with NaBH_4 .

Use [H] to represent an atom of hydrogen from the reducing agent.

..... [1]

(e) NaBiO_3 can be used to determine the concentration of $\text{Mn}^{2+}(\text{aq})$. The ionic equation for the reaction is shown in equation 2.

A student uses the following procedure in an experiment.

- Add 100.0 cm^3 of a saturated solution of $\text{Mn}^{2+}(\text{aq})$ to a volumetric flask.
- Add distilled water to the flask to make a 1.00 dm^3 diluted solution.
- Titrate a 25.00 cm^3 sample of the diluted solution with $0.100 \text{ mol dm}^{-3} \text{ NaBiO}_3(\text{aq})$.

The 25.00 cm^3 sample of the diluted solution of $\text{Mn}^{2+}(\text{aq})$ reacts completely with exactly 21.50 cm^3 of $0.100 \text{ mol dm}^{-3} \text{ NaBiO}_3(\text{aq})$.

Calculate the concentration, in mol dm^{-3} , of $\text{Mn}^{2+}(\text{aq})$ in the saturated solution.

Show your working.

concentration of $\text{Mn}^{2+}(\text{aq})$ in the saturated solution = mol dm^{-3} [3]

[Total: 16]

2 Chlorine, Cl_2 , reacts with many elements and compounds to form chlorides.

Table 2.1 shows information about some chlorides of Period 3 elements.

Table 2.1

	Na	Mg	Si
formula of chloride			
structure of chloride	giant		
bonding of chloride			covalent
pH of solution formed on addition of chloride to water		6.2	

(a) Complete Table 2.1. [3]

(b) When Cl_2 reacts with **cold** $NaOH(aq)$, Cl_2 is both oxidised and reduced. The products are $NaCl$, water and **G**.

(i) State the type of redox reaction in which the same species is both oxidised and reduced.

..... [1]

(ii) Identify **G**.

..... [1]

(iii) Write an equation for the reaction between Cl_2 and **hot** $NaOH(aq)$.

..... [1]

(iv) Describe fully what is observed when $AgNO_3(aq)$ is added to the aqueous solution of the chloride of sodium, followed by dilute $NH_3(aq)$.

.....
..... [2]

(c) An excess of Cl_2 reacts with phosphorus to form PCl_5 .

(i) PCl_5 is a simple molecule in the gas phase.

It also exists in a solid form as two ions, PCl_4^+ and PCl_6^- .

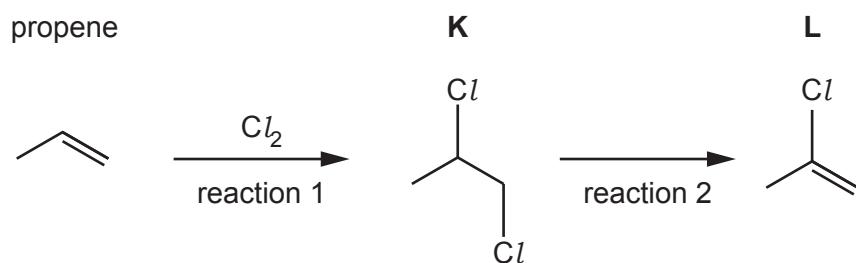
Complete Table 2.2 to identify the shapes of each of these species.

Table 2.2

species	PCl_5	PCl_4^+	PCl_6^-
shape		tetrahedral	

[2]

(ii) PCl_5 reacts with **J** to form H_3PO_4 .


Identify **J** and state the type of reaction.

J type of reaction

[2]

(d) Cl_2 reacts readily with propene to form **K**, 1,2-dichloropropane.

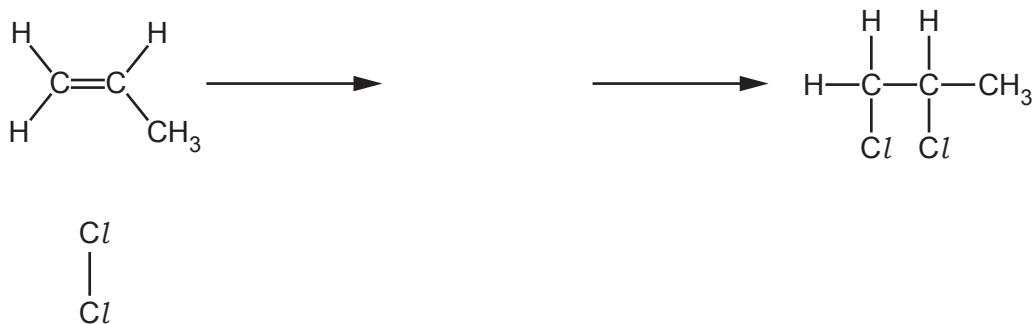

K can be used to form **L**.

Fig. 2.1

(i) Complete Fig. 2.2 to show the mechanism for the reaction of Cl_2 with propene in reaction 1.

Include charges, dipoles, lone pairs of electrons and curly arrows, as appropriate.

Fig. 2.2

[4]

(ii) Identify the reagent and conditions for reaction 2.

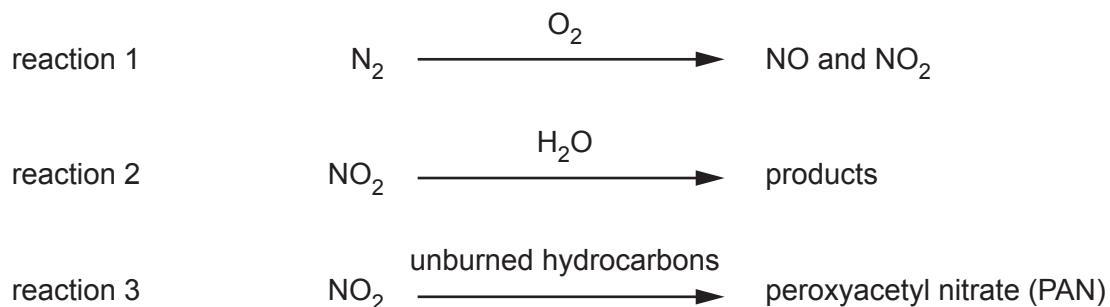
..... [1]

(iii) Draw **one** repeat unit of the addition polymer that forms from **L**.

[1]

[Total: 18]

3 Nitrogen, N_2 , is generally an unreactive molecule but it does react under certain conditions.


(a) Give **two** reasons to explain the lack of reactivity of nitrogen.

1

2

[2]

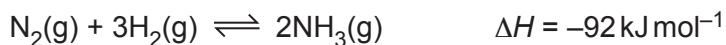
(b) N_2 can react with oxygen in an internal combustion engine to form a mixture of NO and NO_2 . Fig. 3.1 shows a reaction scheme involving N_2 .

Fig. 3.1

(i) Write an equation to show the formation of a mixture of NO and NO_2 in reaction 1.

..... [1]

(ii) Give the formulae of the products of reaction 2.


..... [1]

(iii) State **one** environmental consequence of reaction 3.

..... [1]

(c) The Haber process involves the reaction of N_2 and H_2 to form ammonia, NH_3 .

A catalyst is used, which allows the process to be carried out at a lower temperature and pressure.

(i) Use the information in (c) to complete Table 3.1.

Table 3.1

compound	enthalpy change of formation, ΔH_f / kJ mol^{-1}
N_2	
H_2	
NH_3	

[2]

(ii) Explain how the presence of a catalyst affects the reaction.

.....

 [1]

(iii) State and explain the effect, if any, on the **rate** of the Haber process as the pressure is lowered.

.....

 [2]

(d) The N_2F_2 molecule has a double covalent bond between its nitrogen atoms. This consists of a σ and a π bond.

(i) Complete Fig. 3.2 to show the dot-and-cross diagram for N_2F_2 .

Show outer electrons only.

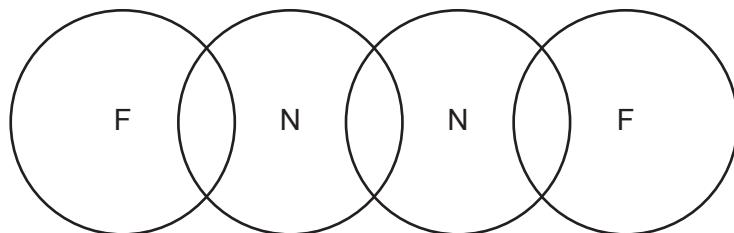


Fig. 3.2

[2]

(ii) Deduce the hybridisation of the N atoms in N_2F_2 .

..... [1]

(iii) Draw a diagram of the π bond between the N atoms in N_2F_2 and describe how it forms.

.....
.....

[2]

[Total: 15]

4 Compound **S** is used in food flavourings. A possible synthesis of **S** is shown in Fig. 4.1.

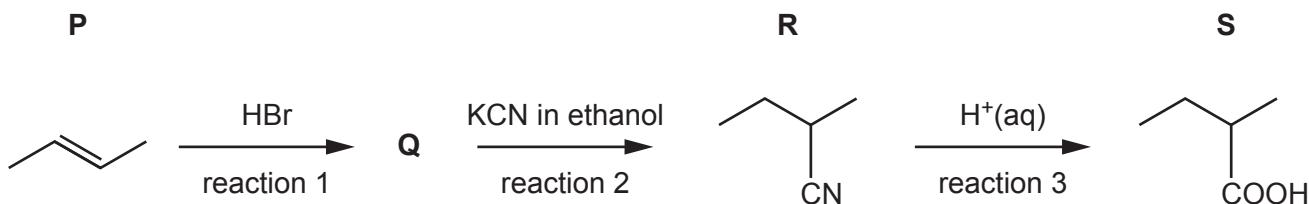


Fig. 4.1

(a) **P**, **Q**, **R** and **S** show stereoisomerism.

Complete Table 4.1 by identifying with a tick (\checkmark) the type of stereoisomerism that each molecule shows.

The type of stereoisomerism shown by **Q** is given.

Table 4.1

	P	Q	R	S
geometrical isomerism				
optical isomerism		\checkmark		

[2]

(b) (i) Give the structural formula of **Q**.

..... [1]

(ii) Name the mechanism in reaction 2.

..... [1]

(iii) Complete the equation for reaction 3. **R** is represented as $\text{C}_4\text{H}_9\text{CN}$.

$\text{C}_4\text{H}_9\text{CN} + \dots$ [1]

(c) Compounds **S** and **T** react to form organic compound **U**, which has a single functional group.

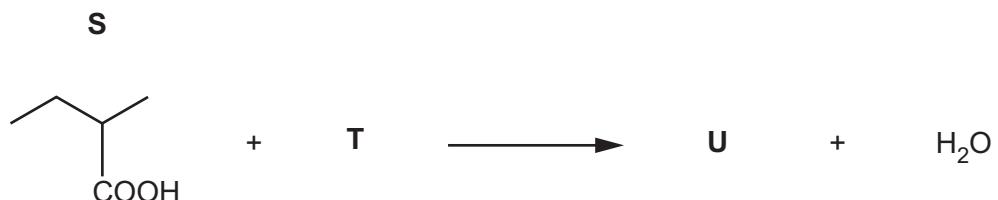
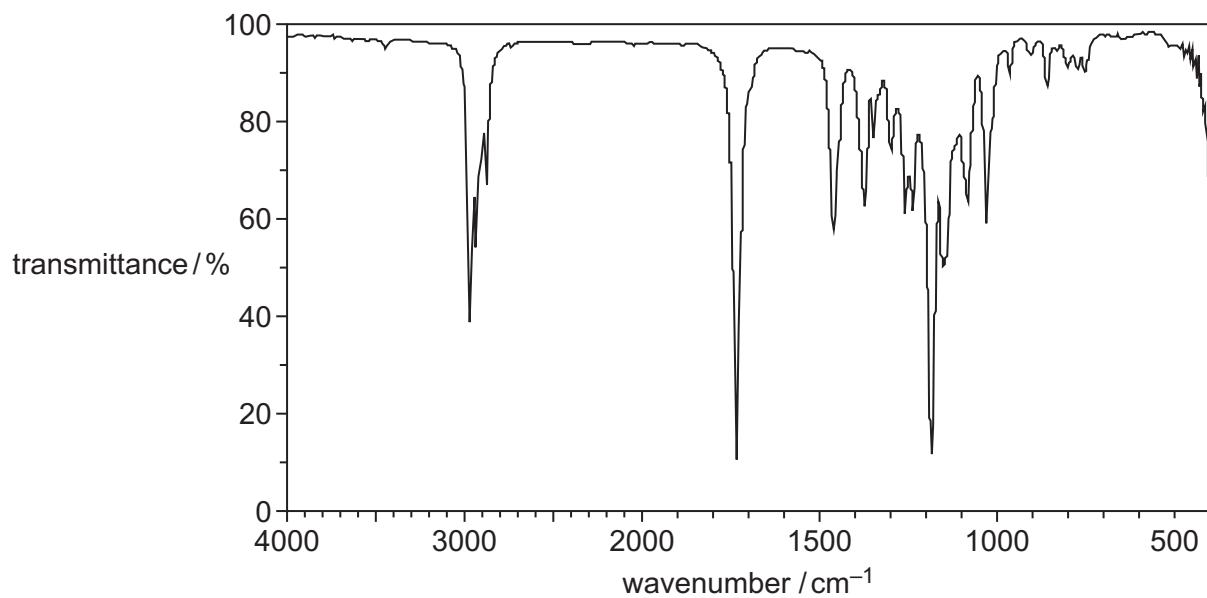


Table 4.2 shows some data from the mass spectrum of **U**.

Table 4.2


peak	relative abundance
M^+	7.2
$[\text{M}+1]^+$	0.55

(i) Use the data from Table 4.2 to show that **U** contains 7 carbon atoms.

Show your working.

[2]

(ii) Fig. 4.2 shows the infrared spectrum of **U**.

Fig. 4.2

Table 4.3

bond	functional groups containing the bond	characteristic infrared absorption range (in wavenumbers)/cm ⁻¹
C–O	hydroxy, ester	1040–1300
C=C	aromatic compound, alkene	1500–1680
C=O	amide carbonyl, carboxyl ester	1640–1690 1670–1740 1710–1750
C≡N	nitrile	2200–2250
C–H	alkane	2850–2950
N–H	amine, amide	3300–3500
O–H	carboxyl hydroxy	2500–3000 3200–3650

Use Fig. 4.2 and Table 4.3 to identify the functional group present in **U**.

Explain your answer fully.

functional group

explanation

.....

.....

.....

[2]

(iii) **T** also has a single functional group.

Use the information in (c)(i) and your answer to (c)(ii) to identify **T** and **U**.

Draw the structures of **T** and **U** in the boxes.

T

U

[2]

[Total: 11]

Important values, constants and standards

molar gas constant	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \text{ C mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \text{ mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \text{ C}$
molar volume of gas	$V_m = 22.4 \text{ dm}^3 \text{ mol}^{-1}$ at s.t.p. (101 kPa and 273 K) $V_m = 24.0 \text{ dm}^3 \text{ mol}^{-1}$ at room conditions
ionic product of water	$K_w = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \text{ kJ kg}^{-1} \text{ K}^{-1}$ (4.18 J g ⁻¹ K ⁻¹)

The Periodic Table of Elements

1		2		Group																					
Key		1		H		13		14		15		16		17		18									
3	Li	4	Be	5	B	6	C	7	N	8	O	9	F	10	Ne	11	He	12	He	13	He				
lithium	6.9	beryllium	9.0	boron	10.8	carbon	12.0	nitrogen	14.0	oxygen	16.0	fluorine	19.0	neon	20.2	helium	4.0	helium	4.0	helium	4.0				
11	Na	12	Mg	13	Al	14	Si	15	P	16	S	17	Cl	18	Ar	19	Ar	20	Ar	21	Ar				
sodium	23.0	magnesium	24.3	aluminum	27.0	silicon	28.1	phosphorus	31.0	sulfur	32.1	chlorine	35.5	oxygen	39.9	oxygen	39.9	oxygen	39.9	oxygen	39.9	oxygen			
19	K	20	Ca	21	Ti	22	V	23	Cr	24	Mn	25	Fe	26	Co	27	Ni	28	Cu	29	Zn				
potassium	39.1	calcium	40.1	scandium	45.0	titanium	47.9	vanadium	50.9	chromium	52.0	manganese	54.9	iron	55.8	cobalt	58.9	nickel	58.7	copper	63.5	zinc			
37	Rb	38	Sr	39	Y	40	Nb	41	Tc	42	Mo	43	Ru	44	Rh	45	Pd	46	Ag	47	Cd				
rubidium	85.5	strontium	87.6	yttrium	88.9	zirconium	91.2	niobium	92.9	technetium	95.9	molybdenum	95.9	ruthenium	101.1	rhodium	102.9	palladium	106.4	silver	107.9	cadmium	112.4		
55	Cs	56	Ba	57–71	Ta	72	Hf	73	Re	74	W	75	Ir	76	Os	77	Pt	78	Hg	79	Tl				
caesium	132.9	barium	137.3	lanthanoids	178.5	hafnium	180.9	tantalum	183.8	rhodium	186.2	tin	190.2	iridium	192.2	osmium	192.2	platinum	195.1	mercury	197.0	thallium	204.4		
87	Fr	88	Ra	89–103	Rf	104	Db	105	Am	106	Bh	107	Rs	108	Mt	109	Ds	110	Rg	111	Nh	112			
francium	–	radium	–	actinoids	rutherfordium	dubnium	–	seaborgium	–	curium	–	meitnerium	–	bohrium	–	roentgenium	–	damascinium	–	copernicium	–	meitnerium	–		
57	La	58	Ce	59	Pr	60	Nd	61	Pm	62	Sm	63	Eu	64	Gd	65	Tb	66	Dy	67	Ho	68			
lanthanum	138.9	cerium	140.1	praseodymium	140.9	neodymium	144.2	promethium	–	samarium	150.4	europium	152.0	gadolinium	157.3	terbium	158.9	dysprosium	162.5	erbium	167.3	thulium	168.9		
89	Ac	90	Th	91	Pa	92	U	93	Np	94	Pu	95	Am	96	Cm	97	Bk	98	Cf	99	Fm	100	Md	101	
actinium	–	thorium	232.0	protactinium	231.0	neptunium	–	plutonium	–	curium	–	americium	–	curium	–	berkelium	–	californium	–	einsteiniun	–	fermium	–	mendelevium	–
lanthanoids	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–		
actinoids	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–		
71	Lu	72	Yb	73	Tm	74	Er	75	Ho	76	Tb	77	Dy	78	Gd	79	Tb	80	Er	81	Ho	82	Tb	83	
lutetium	175.0	yterbium	173.1	thulium	168.9	erbium	167.3	holmium	164.9	terbium	158.9	dysprosium	162.5	thulium	157.3	gadolinium	158.9	erbium	167.3	thulium	168.9	ytterbium	173.1	lutetium	175.0

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.