

MARK SCHEME for the May/June 2007 question paper

9701 CHEMISTRY

9701/02 Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2007	9701	02

1 (a) (i) between 117° and 120° [1]

(ii)

14 electrons must be shown
single N-N bond
lone pair on each N atom

[1]
[1]

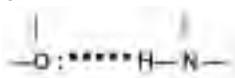
(iii) between 107° and 109° [1] [4]

(b) ethene – van der Waals' forces [1]
hydrazine – hydrogen bonds [1]

hydrogen bonds are stronger
or van der Waals' forces are weaker [1] [3]

(c) correct dipole on O—H and N—H bonds [1]

labelled hydrogen bond shown
between an O atom of H_2O and a H atom of N_2H_4
or between an N atom of N_2H_4 and a H atom of H_2O


[1]

lone pair on O atom or on N atom *in the H bond*

i.e.

or

[1] [3]

(d) (i) $\text{CH}_2 = \text{CH}_2 + \text{HCl} \rightarrow \text{CH}_3\text{CH}_2\text{Cl}$ [1]

(ii) electrophilic addition [1]

(iii) there is no further unsaturation
or $\text{CH}_3\text{CH}_2\text{Cl}$ molecule is saturated
or no possibility of addition
or no free radicals are present [1] [3]

(e) (i) acid – base/neutralization [1]

(ii) N atom has a lone pair of electrons
or N atom can behave as a base
or N atom can form dative bond [1]

(iii) each N atom has a lone pair
or each nitrogen atom can behave as a base
or each nitrogen atom can form a dative bond [1] [3]

[Total: 16]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2007	9701	02

2 (a) rate of forward reaction equals
rate of backward reaction
or equilibrium concentrations remain constant
while reaction is occurring [1] [1]

(b) $K_c = \frac{[\text{CH}_3\text{CO}_2\text{C}_2\text{H}_5][\text{H}_2\text{O}]}{[\text{CH}_3\text{CO}_2\text{H}][\text{C}_2\text{H}_5\text{OH}]}$ [1] [1]

initial moles	0.5	0.5	0.1	0.1
equil. moles	$(0.5 - x)$	$(0.5 - x)$	$(0.1 + x)$	$(0.1 + x)$
equil. concn./ mol dm ⁻³	$\frac{(0.5 - x)}{V}$	$\frac{(0.5 - x)}{V}$	$\frac{(0.1 + x)}{V}$	$\frac{(0.1 + x)}{V}$

$$K_c = \frac{(0.1 + x)^2}{(0.5 - x)^2} = 4$$
 [1]

gives $x = 0.3$ [1]

$n(\text{CH}_3\text{CO}_2\text{H}) = n(\text{C}_2\text{H}_5\text{OH}) = 0.2$ and

$n(\text{CH}_3\text{CO}_2\text{C}_2\text{H}_5) = n(\text{H}_2\text{O}) = 0.4$ [1]

allow ecf on wrong equil. moles subject to $x < 0.5$

[4]

(d)

alcohol reagent(s) and conditions	$\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{OH}$	$\text{CH}_3\text{CH}_2\text{CH}(\text{OH})\text{CH}_3$	$(\text{CH}_3)_3\text{COH}$
red phosphorus and iodine heat under reflux	X	$\text{CH}_3\text{CH}_2\text{CH}(\text{CH}_3)_2$ I [1]	X
concentrated H_2SO_4 heat	X	X	$\text{CH}_3\text{---C}=\text{CH}_2$ CH ₃ [1]
$\text{Cr}_2\text{O}_7^{2-}/\text{H}^+$ heat under reflux	$\text{CH}_3\text{CH}_2\text{CH}_2\text{CO}_2\text{H}$ [1]	$\text{CH}_3\text{CH}_2\text{COCH}_3$ [1]	no reaction [1]

[Total: 11]

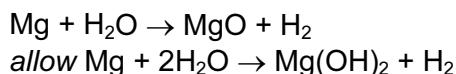
Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2007	9701	02

3 (a)

	1s	2s	2p	3s	3p	3d	4s	4p	4d
Ca	2	2	6	2	6	0	2	0	0
Sr ²⁺	2	2	6	2	6	10	2	6	

[1]

[1]

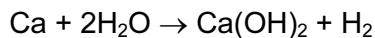

[2]

(b) (i) more shells of electrons [1]

(ii) outermost shell has been removed [1]

(iii) outermost electrons are further from nucleus/there are more shells
increased shielding [1] [1] [4]

(c) (i) very slow reaction [1]
formation of bubbles of gas [1]



[1]

(ii) faster reaction than with Mg [1]

white suspension formed
or evolution of gas
or calcium dissolves/disappears

[1]

[1]

allow 1 mark in (i) or (ii) if gas is described as colourless [1] [7]

(d) (i) gas evolved [1]
gas is brown [1]

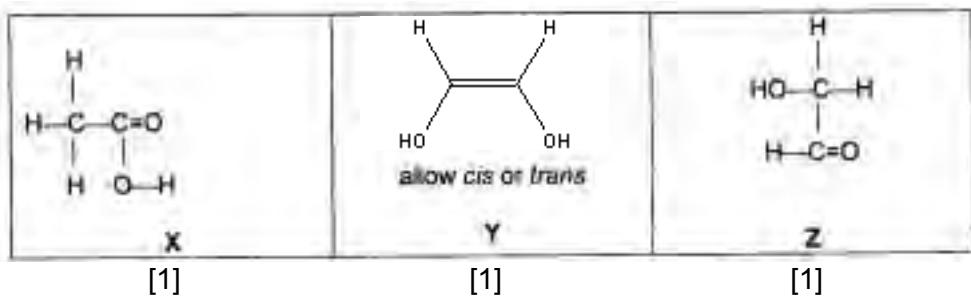
(ii) $2\text{Sr}(\text{NO}_3)_2 \rightarrow 2\text{SrO} + 4\text{NO}_2 + \text{O}_2$ [1]
correct products [1]
balanced equation [1] [4]

[Total: 17 max. 16]

Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2007	9701	02

4 (a) (i) white ppt.
 AgCl [1]
[1]

(ii) white/steamy/misty fumes
 HCl [1]
[1]


(iii) colourless gas evolved or Na dissolves
 H_2 or CH_3ONa [1]
[1] [6]

(b) $\text{C:H:O} = \frac{40}{2} : \frac{6.7}{1} : \frac{53.3}{16}$ [1]

$= 3.33 : 6.7 : 3.33$ [1]

$= 1 : 2 : 1$ [2]

(c)

[3]

(d) (i) with solid NaHCO_3
candidate's carboxylic acid [X above]
gas/ CO_2 evolved [1]
[1]

(ii) with Tollens' reagent
candidate's aldehyde [Z above]
Ag mirror/Ag ppt. [1]
[1] [4]

(e) two correct structures [of Y above]
correctly labelled cis and trans [1]
[1] [2]

[Total: 17]