

MARK SCHEME for the May/June 2008 question paper

9701 CHEMISTRY

9701/02

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2008	9701	02

1 (a) (i) 2 (1)

(ii) between 104° and 105° (1)

[2]

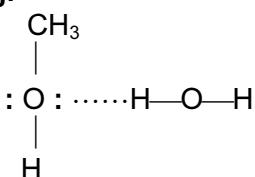
(b) ethanal CH_3CHO A (1)

ethanol $\text{CH}_3\text{CH}_2\text{OH}$ C (1)

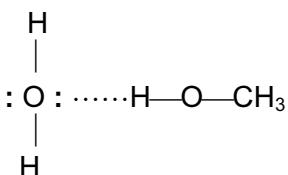
methoxymethane CH_3OCH_3 A (1)

2-methylpropane $(\text{CH}_3)_2\text{CHCH}_3$ B (1)

[4]


(c) (i) hydrogen bonds (1)

(ii) correct dipole on an $-\text{O}—\text{H}$ bond (1)


hydrogen bond shown between the lone pair of an O and a H atom in an $-\text{OH}$ group (1)

lone pair on O atom of CH_3OH or H_2O clearly shown in the hydrogen bond (1)

e.g.

or

[4]

(d) hydrogen bonds exist between H_2O molecules (1)

hydrogen bonds cannot form between $\text{C}_2\text{H}_5\text{OC}_2\text{H}_5$ molecules (1)

[2]

[Total: 12]

Page 3	Mark Scheme GCE A/AS LEVEL – May/June 2008	Syllabus 9701	Paper 02
--------	---	------------------	-------------

2 (a) $F(g) \rightarrow F^+(g) + e^-$

correct equation (1)

correct state symbols (1)

[2]

(b) from Na to Ar, electrons

are added to the same shell/have same shielding (1)

are subject to increasing nuclear charge/proton number (1)

are closer to the nucleus **or** atom gets smaller (1)

[3]

(c) (i) Al and Mg

in Al outermost electron is in 3p rather than 3s (1)

3p electron is at higher energy

or is further away/is more shielded from nucleus (1)

(ii) P and S

for P 3p sub-shell is singly filled

and for S one 3p orbital has paired electrons (1)

paired electrons repel (1)

[4]

(d) (i) and (ii)

element	Na	Mg	Al	Si	P	S
melting point	low	-----	high	high	low	low
conductivity	high	-----	high	moderate	low	low
	(1)		(1)	(1)	(1)	(1)

one mark for each correct column

[5]

(e) because they had not been discovered (1)

[1]

[Total: 15]

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2008	9701	02

3 (a) high temperature (and/or pressure) provide enough energy (1)

to break N≡N bond
or to provide E_a for N₂/O₂ reaction (1)

[2]

(b) (i) **two** from C, CO, hydrocarbon, SO₂, H₂S, NO₂/NO_x (1 + 1)

not CO₂, H₂, H₂O, SO₃, NO

(ii) Pt **or** Pd **or** Pt/Rh **or** Pt/Pd/Rh (1)

(iii) 2NO + 2CO → 2CO₂ + N₂
or 2NO + C → CO₂ + N₂ (1)

[4]

(c) (i) $K_c = \frac{[\text{NO}]^2 [\text{Cl}_2]}{[\text{NOCl}]^2}$ (1)

units are mol dm⁻³ (1)

(ii) at 230 °C $K_c = \frac{(1.46 \times 10^{-3})^2 \times 1.15 \times 10^{-2}}{(2.33 \times 10^{-3})^2}$

= 4.5×10^{-3} mol dm⁻³ (1)

at 465 °C $K_c = \frac{(7.63 \times 10^{-3})^2 \times 2.14 \times 10^{-4}}{(3.68 \times 10^{-4})^2}$

= 9.2×10^{-2} mol dm⁻³ (1)

allow ecf on answer to part (i)

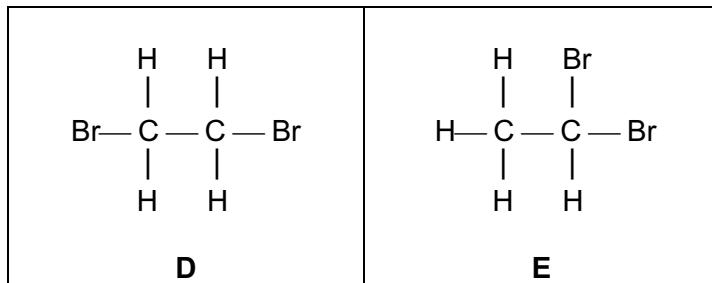
(iii) endothermic **because** K_c increases with temperature
 mark is for explanation
 allow ecf on answer to part (ii) (1)

[5]

(d) (i) equilibrium moves to RHS (1)

more moles on RHS (1)

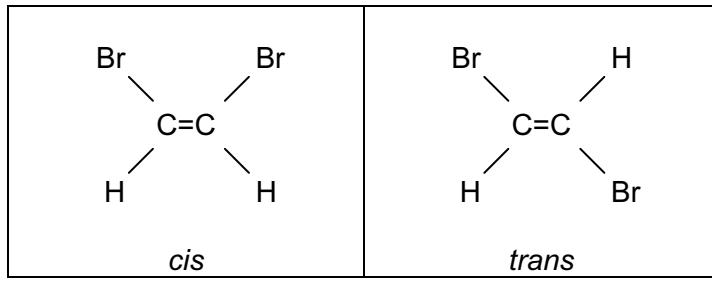
(ii) no change to equilibrium position (1)


[NOCl] and [NO] change by same amount (1)

[4]

[Total: 15]

Page 5	Mark Scheme GCE A/AS LEVEL – May/June 2008	Syllabus 9701	Paper 02
--------	---	------------------	-------------


4 (a) (i)

(1)

(1)

(ii)

(1)

(1)

[4]

(b) (i) hydrogen (1)

nickel catalyst – allow platinum or palladium (1)

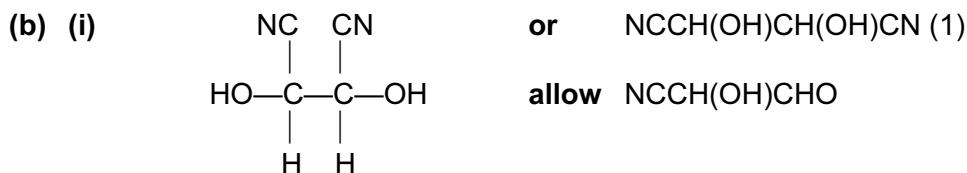
(ii) isomer formed **must** be 1,2-dibromoethane (**D** above)

because

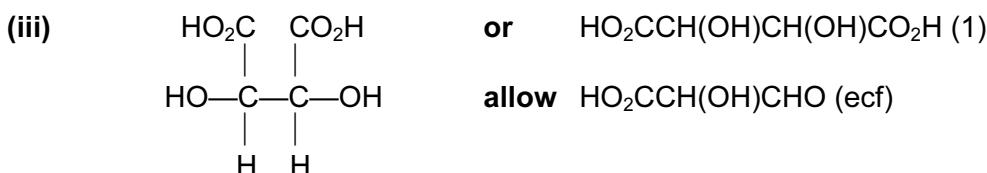
cis isomer has one Br atom on **each** carbon atom (1)

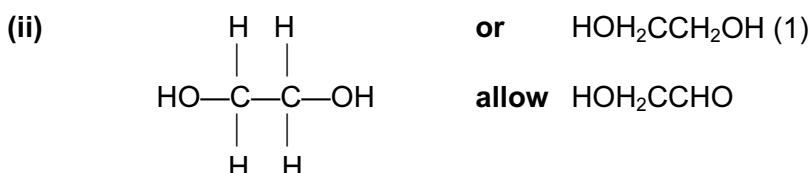
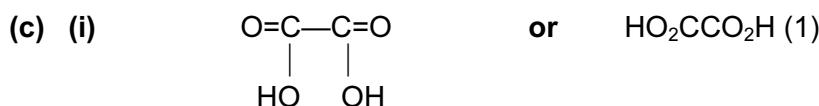
mark is for the reason but wrong isomer is penalised

[3]


[Total: 7]

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2008	9701	02


5 (a) (i) silver or black ppt. (1)



[2]

(ii) nucleophilic addition (1)

[3]

(iii) NaBH_4 or LiAlH_4 or H_2/Ni (1)

[3]

(d) both oxidation and reduction allow disproportionation (1)

[1]

(e) $\text{HO}—\text{C}\equiv\text{C}—\text{OH}$ – candidate's compound must be $\text{C}_2\text{H}_2\text{O}_2$

-OH present (1)

$\text{C}\equiv\text{C}$ present (1)

[2]

[Total: 11]