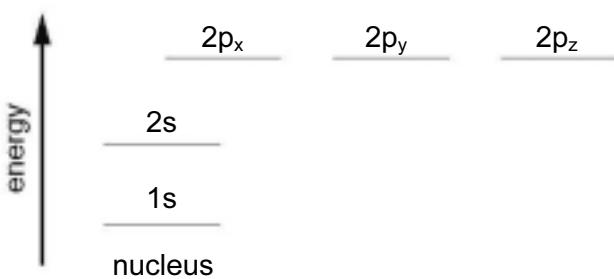


MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9701 CHEMISTRY

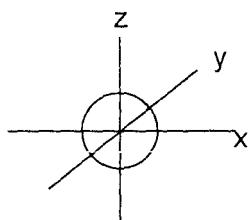
9701/22 Paper 2 (AS Structured Questions), maximum raw mark 60

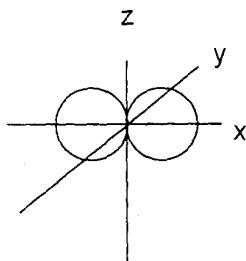
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.


Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

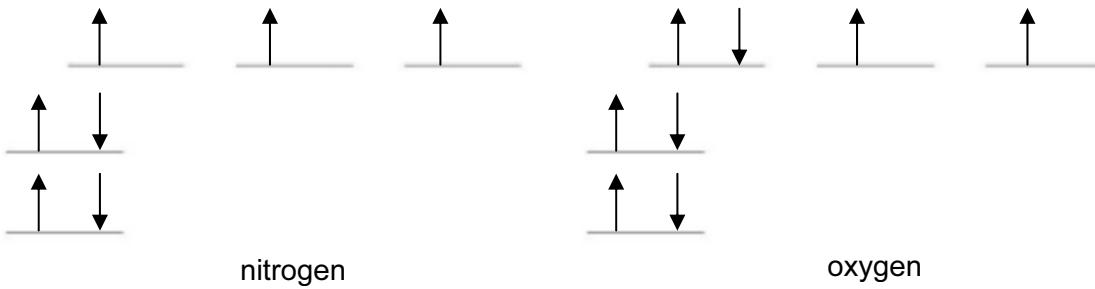
CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.


1 (a) (i)


correct 1s and 2s (1)

correct $2p_x$, $2p_y$ and $2p_z$ (1)

(ii)


spherical s orbital (1)

double lobed p orbital along one axis (1)

both orbitals correctly labelled (1)

(iii)

both correct (1)

[6]

(b) (i) N 1400 kJ mol⁻¹ O 1310 kJ mol⁻¹ **both** (1)

(ii) N is all singly filled 2p orbitals **or** O has one filled/paired 2p orbital (1)
these paired 2p electrons in the O atom repel one another (1)

[3]

[Total: 9]

2 (a)

element	particle	formula
copper	cation	Cu^{2+} allow Cu^+
argon	atom or molecule	Ar

one mark for each correct row **or** column (2×1)

[2]

(b) **Cu** cations held in 'sea' of delocalised electrons (1)

by strong metallic bonds (1)

Ar van der Waals' forces between molecules (1)

which are weak (1)

[4]

(c) (i) oxidising agent **or** electron acceptor (1)

Ar has very high first I.E

or E_a for reaction is very high

or Ar has full valency shell/complete octet (1)

[2]

(d) from Ne to Xe more electrons in atom (1)

hence more induced dipoles/van der Waals' forces (1)

[2]

[Total: 10]

3 (a)

oxide	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₄ O ₆	SO ₂
bonding	ionic	ionic	ionic/covalent	covalent	covalent	covalent
structure	giant	giant	giant	giant	simple	simple

(i) fully correct 'bonding' row (1)

(ii) fully correct 'structure' row (1)

[2]

(b) Al₂O₃ or SiO₂ (1)

[1]

(c) (i) Na₂O Na₂O + H₂O → 2NaOH (1)
 pH 10–14 (1)

SO₂ SO₂ + H₂O → H₂SO₃ (1)
 pH 2–5 (1)

(ii) NaOH + H₂SO₃ → NaHSO₃ + H₂O
or 2NaOH + H₂SO₃ → Na₂SO₃ + 2H₂O (1)

[5]

(d) MgO(l) conducts (1)
MgO(l) contains free/mobile ions (1)
SiO₂(l) does not conduct (1)
SiO₂(l) has no free ions (1)

[4]

[Total: 12]

Page 5	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2010	Syllabus 9701	Paper 22
--------	--	------------------	-------------

4 (a) $C : H : O = \frac{48.7}{12} : \frac{8.1}{1} : \frac{43.2}{16}$ (1)
 $= 4.06 : 8.1 : 2.70$
 $= 1.5 : 3 : 1$
 $= 3 : 6 : 2$

empirical formula is $C_3H_6O_2$ (1)

[2]

(b) (i) $M_r = \frac{mRT}{pV} = \frac{0.13 \times 8.31 \times 400}{1.00 \times 10^5 \times 58.0 \times 10^{-6}}$ (1)
 $= 74.5$ (1)

(ii) $C_3H_6O_2 = 36 + 6 + 32 = 74$ (1)
 $n(C_3H_6O_2) = 74.5$
hence molecular formula of E is $C_3H_6O_2$ (1)

[4]

(c) structures of F are

$HCO_2CH(CH_3)_2$ S	$HCO_2CH_2CH_2CH_3$ T	$CH_3CO_2CH_2CH_3$ U	$CH_3CH_2CO_2CH_3$ V
-------------------------------	---------------------------------	--------------------------------	--------------------------------

each correct structure is worth one mark (3 x 1)

[3]

(d) (i) H_2SO_4/HC mineral acid or $NaOH/KOH$ (1)

(ii) carboxylic acid not 'acid' (1)

[2]

(e) (i) aldehyde (1)

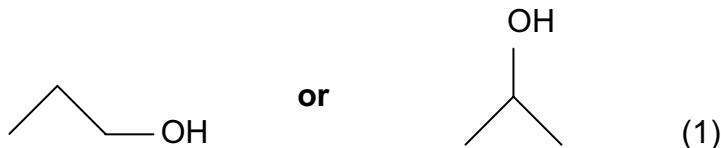
(ii) must be a primary alcohol (1)

(iii) CH_3OH or CH_3CH_2OH or $CH_3CH_2CH_2OH$ (1)

[3]

(f) (i) **S** (1)

(ii) only **S** is not the ester of a primary alcohol
or only **S** is the ester of a secondary alcohol (1)


[2]

[Total: 16]

Page 6	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2010	Syllabus 9701	Paper 22
--------	--	------------------	-------------

5 (a) (i) propan-1-ol or propan-2-ol (1)

(ii)

(iii) dehydration or elimination (1)

[3]

(b) (i) carbon (1)
by decomposition/cracking of the alcohol (1)

(ii) to avoid 'sucking back' of water into the hot tube (1)

(iii) SiO_2 (1)

(iv) conc. H_2SO_4 or P_4O_{10} or Al_2O_3 or H_3PO_4 (1)

[5]

(c) (i) $\text{CH}_3\text{CHBrCH}_2\text{Br}$ (1)

(ii) $\text{CH}_3\text{CH}(\text{OH})\text{CH}_2\text{OH}$ (1)

(iii) $\text{CH}_3\text{CO}_2\text{H}$ (1)

[3]

(d) (i) (very) high pressure or Ziegler-Natta catalyst (1)

(ii) does not biodegrade or gives harmful combustion products (1)

[2]

[Total: 13]