

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE
International Examinations

1 (a) (i) from Na to Cl

nuclear charge increases (1)
electrons are in the same shell/have the same shielding (1)
nuclear attraction increases (1)

(ii) argon does not form any bonds/compounds **or**
argon exists as single atoms/is monatomic (1) [4]

(b) (i)

radius of cation/nm			radius of anion/nm		
Na ⁺	Mg ²⁺	Al ³⁺	P ³⁻	S ²⁻	Cl ⁻
0.095	0.065	0.050	0.212	0.184	0.181

(1)

(ii) cations contain fewer electrons than the corresponding atoms **or**

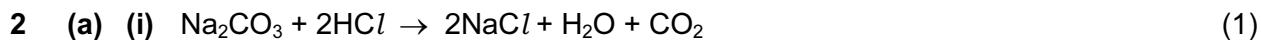
cations contain fewer electrons than they do protons (1)
nucleus has a greater attraction (1)

(iii) anions contain more electrons than the corresponding atoms **or**

anions contain more electrons than they do protons (1)
nucleus has a smaller attraction (1) [5] (1)

(c) (i) $\text{Na}_2\text{O} + \text{H}_2\text{O} \rightarrow 2\text{NaOH}$

$\text{SO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_3$ (1)


(ii) for Na₂O 10 to 14
for SO₂ 1 to 4 (1) (1)

(iii) $\text{NaOH} + \text{H}_2\text{SO}_3 \rightarrow \text{NaHSO}_3 + \text{H}_2\text{O}$ **or**

$2\text{NaOH} + \text{H}_2\text{SO}_3 \rightarrow \text{Na}_2\text{SO}_3 + 2\text{H}_2\text{O}$ (1) [5] (1)

[Total: 14]

Page 3	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012	Syllabus 9701	Paper 23
--------	--	------------------	-------------

(ii) $n(\text{HCl}) = \frac{35.8}{1000} \times 0.100 = 3.58 \times 10^{-3}$ (1)

(iii) $n(\text{Na}_2\text{CO}_3) = \frac{35.8}{2} \times 10^{-3} = 1.79 \times 10^{-3}$ mol in 25.0 cm^3 (1)

(iv) $n(\text{Na}_2\text{CO}_3) = 1.79 \times 10^{-3} \times 10 = 1.79 \times 10^{-2}$ mol in 250 cm^3 (1)

(v) mass of $\text{Na}_2\text{CO}_3 = 1.79 \times 10^{-2} \times 106 = 1.90\text{g}$
 M_r of $\text{Na}_2\text{CO}_3 = 106$ (1)
mass of $\text{Na}_2\text{CO}_3 = 1.90 \text{ g}$ (1) [6]

(b) $n(\text{H}_2\text{O})$ in 5.13 g of washing soda = $\frac{5.13 - 1.90}{18} = 1.79 \times 10^{-1}$ mol (1)

$n(\text{Na}_2\text{CO}_3)$ in 5.13 g of washing soda = 1.79×10^{-2} mol
 $n(\text{H}_2\text{O}) : n(\text{Na}_2\text{CO}_3) = 10 : 1$ (1)

or

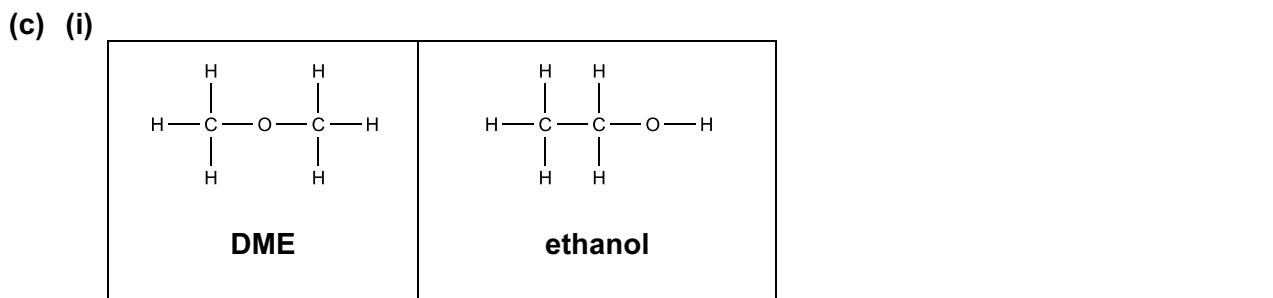
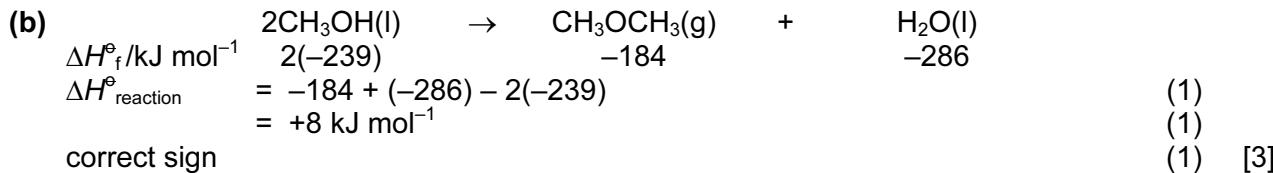
1.90 g Na_2CO_3 are combined with 3.23g H_2O

106 g Na_2CO_3 are combined with $\frac{3.23 \times 106}{1.90} = 180.2 \text{ g}$ H_2O (1)

this is 10 mol of H_2O (1)

or

1.79×10^{-2} mol $\text{Na}_2\text{CO}_3 \cdot x\text{H}_2\text{O} \equiv 5.13 \text{ g}$ of washing soda



$1 \text{ mol } \text{Na}_2\text{CO}_3 \cdot x\text{H}_2\text{O} \equiv \frac{5.13}{1.79 \times 10^{-2}} = 286.6 \text{ g}$ (1)

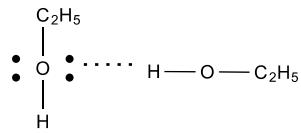
$\text{Na}_2\text{CO}_3 = 106$ and $\text{H}_2\text{O} = 18$ hence $x = 10$ (1) [2]

[Total: 8]

Page 4	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012	Syllabus 9701	Paper 23
--------	--	------------------	-------------

3 (a) $\text{CH}_3\text{OCH}_3(\text{l}) + 3\text{O}_2(\text{g}) \rightarrow 2\text{CO}_2(\text{g}) + 3\text{H}_2\text{O}(\text{l})$ (1)
 the enthalpy change/heat change/heat evolved when
 one mole of CH_3OCH_3 /a compound (1)
 is completely burned or
 burned in an excess of air/oxygen (1) [3]

both correct (1)

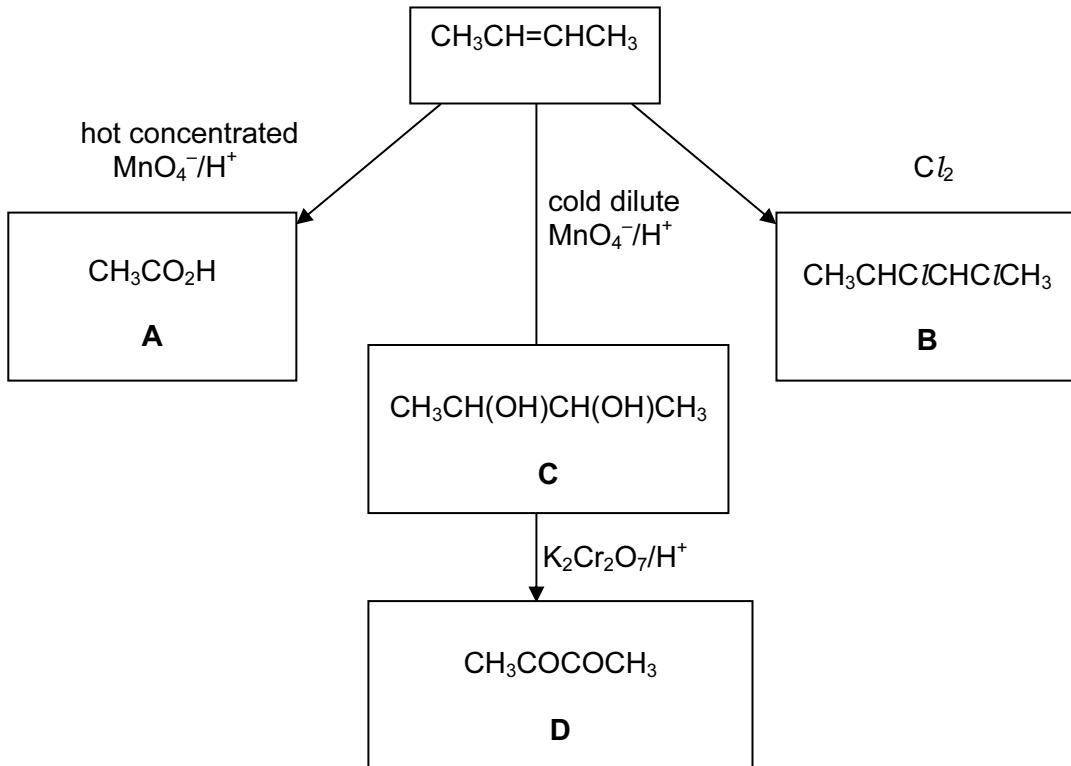

(ii) structural isomerism or functional group isomerism (1) [2]

(d) (i) hydrogen bonds (1)

(ii) lone pair on O atom of $\text{C}_2\text{H}_5\text{OH}$ (1)

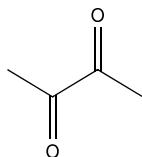
correct dipole $\text{O}^{\delta-}—\text{H}^{\delta+}$ on bond in one molecule of ethanol (1)

hydrogen bond shown between lone pair of an O atom and a hydrogen atom, i.e.


(1) [4]

[Total: 12]

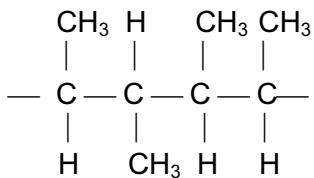
4 (a) high temperature and high pressure
high temperature and catalyst (1)
(1) [2]


(b) $\text{C}_{12}\text{H}_{26} \rightarrow \text{C}_4\text{H}_8 + \text{C}_8\text{H}_{18}$ or
 $\text{C}_{12}\text{H}_{26} \rightarrow 2\text{C}_4\text{H}_8 + \text{C}_4\text{H}_{10}$ (1) [1]

(c)

(4 × 1) [4]

(d) (i)


(1)

(ii) compound B
compound C

(1)
(1) [3]

Page 6	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012	Syllabus 9701	Paper 23
--------	--	------------------	-------------

(e)

allow any orientation of CH_3 – groups

(1) [1]

(f) (i) $\text{CH}_2=\text{CH}-\text{CH}=\text{CH}_2$

allow $\text{CH}_3\text{CHOHCH}=\text{CH}_2$ and $\text{CH}_3\text{C}\equiv\text{CCH}_3$

(1)

(ii) $\text{CH}_2\text{BrCHBrCHBrCH}_2\text{Br}$

allow $\text{CH}_3\text{CBr}_2\text{CBr}_2\text{CH}_3$ from $\text{CH}_3\text{CHOHCH}=\text{CH}_2$

allow $\text{CH}_3\text{CHOHCHBrCH}_2\text{Br}$ from $\text{CH}_3\text{C}\equiv\text{CCH}_3$

(1)

(iii) electrophilic addition

both words required

(1) [3]

[Total: 14]

Page 7	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012	Syllabus 9701	Paper 23
--------	--	------------------	-------------

5 (a) (i) CO_2 /carbon dioxide (1)
 (ii) carboxylic acid or $-\text{CO}_2\text{H}$ or $-\text{COOH}$ (1) [2]

(b) (i) dehydration or elimination (1)
 (ii) H contains $>\text{C}=\text{C}<$ bond (1)
 H contains $-\text{CO}_2\text{H}$ group (1)
 H is $\text{CH}_2=\text{CHCO}_2\text{H}$ (1) [4]

(c) $n(\text{F}) = \frac{0.600}{90} = 6.67 \times 10^{-3} \text{ mol}$ (1)

F contains one $-\text{OH}$ group and one $-\text{CO}_2\text{H}$ group
 hence one mole of F produces one mole of H_2 with Na (1)
 $n(\text{H}_2) = 6.67 \times 10^{-3} \text{ mol}$ (1)
 $\text{vol. of } \text{H}_2 = 6.67 \times 10^{-3} \times 24000 \text{ cm}^3$
 $= 160 \text{ cm}^3$ at room temperature and pressure (1)
 [4]

(d) (i)

$\text{HOCH}_2\text{CH}_2\text{CO}_2\text{H}$	$\text{CH}_3\text{CH}(\text{OH})\text{CO}_2\text{H}$
J	K

one isomer correct (1)

(ii)

$\text{HO}_2\text{CCH}_2\text{CO}_2\text{H}$	$\text{CH}_3\text{COCO}_2\text{H}$
product from J	product from K

one oxidation product correct (1) [2]

[Total: 12]