

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9701 CHEMISTRY

9701/43 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

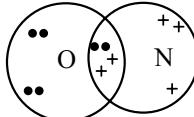
- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012	Syllabus 9701	Paper 43
--------	--	------------------	-------------

1 (a) (i) the enthalpy change/released when **1 mole is formed** [1]
 of ionic lattice **from the gas phase ions** [1]

(ii) $Mg^{2+} + O^{2-} \longrightarrow MgO$ [1]
 [3]


(b) measurements needed:
volume/mass/weight of water (in calorimeter) [1]
 initial + final temperature/temperature change/temperature rise (of the water) [1]
 mass of Mg (used)/mass MgO [1]
Not volume/moles/mass of oxygen used [3]

(c) $\Delta H = 148 + 736 + 1450 + 496/2 - 141 + 798 - 3791$
 $= \underline{-552 \text{ kJ mol}^{-1}}$ [3]
 [3]

(d) $Na_2O(s) + H_2O(aq/l) \longrightarrow 2NaOH(aq)$ [1]
 $MgO(s) + H_2O(aq/l) \longrightarrow Mg(OH)_2(s) \text{ or } Mg(OH)_2(aq)$ [1]
 pH 12.5-14 [NaOH] **AND** 8-10.5 [Mg(OH)₂] respectively [1]
 [3]

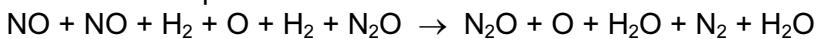
[Total: 12]

2. (a) (i)

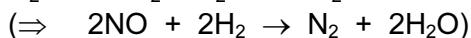
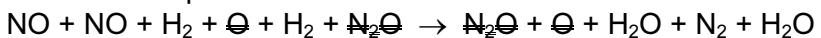
[1]

(ii) -180 kJ mol^{-1} [1]

(iii) (formation of NO is endothermic) so high T **and** equilibrium pushed over to NO side.
 or high T **and** needed to break N-N bond in N₂ [1]


(iv) $-180 = 2 E(NO) - 994 - 496$
 $E(NO) = \underline{+655 \text{ kJ mol}^{-1}}$ [1]
 [1]
 [5]

(b) (i) (from 1 and 2:) as p(NO) halves, rate decreases to $\frac{1}{4}$, **so order = 2** [1]
 (from 1 and 3:) as p(H₂) halves, so does rate, **so order = 1** [1]



(ii) rate = $k p_{NO}^2 \cdot p_{H_2}$
 units (of k) are atm⁻² s⁻¹ [1]
 [1]

Page 3	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012	Syllabus 9701	Paper 43
--------	--	------------------	-------------

(iii) add all three equations:

cross out all species common to both sides:

[1]

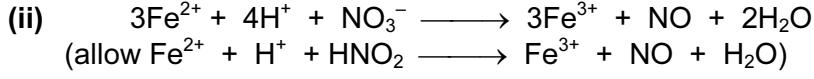
(iv) either: **step 2** since it involves H_2

O formed from NO

or: **step 3** since it involves H_2

N_2O formed from NO

[1]


[1]

[1]

[1]

[8]

(c) (i) NO [1]

[1]

(iii) dative/coordinate bonding [1]

[1]

[4]

[Total:17]

3. (a) (i) $\text{C}_{16}\text{H}_{10}\text{N}_2\text{O}_2$ [1]

(ii) ketone, alkene, amine, aryl (benzene/arene/phenyl)

(any 3)

[2]

[3]

(b) (i) reduction or redox [1]

(ii) NaBH_4 or LiAlH_4 (NOT $\text{H}_2 + \text{Ni}$)

[1]

[2]

(c) 1. 2,4-DNPH [1] red/yellow-orange/orange ppt. [1] no reaction

2. Na metal [1] no reaction

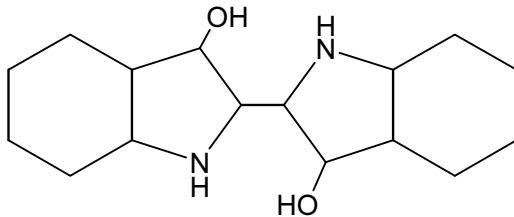
gas given off/fizzing

[1]

or $\text{PCl}_5/\text{SOCl}_2$ [1] no reaction

steamy fumes/fizzing
misty/white fumes

[1]


2 x “no reaction”

must be linked to “correct reagent”

[1]

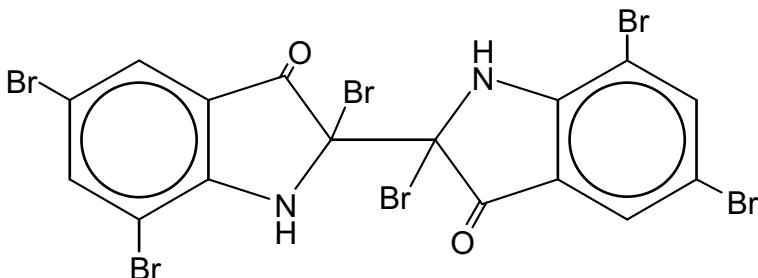
[5]

(d) (i)

[1]

(ii) $M_r = 262$, so $2.5 \text{ g} = 2.5/262 = 9.54 \times 10^{-3} \text{ mol}$

[1]


(1 mol indigo absorbs 9 mol of H_2)

so volume of $\text{H}_2 = 9 \times 24 - 9.54 \times 10^{-3} = \mathbf{2.06 \text{ dm}^3}$ (2060 cm^3)

[1]

[3]

(e)

2 x Br on C=C

[1]

a Br on each ring

[1]

TWO non-adjacent Br on each ring

[1]

[3]

[Total: 16]

4 (a) (i) volatilities decrease down the group

[1]

due to greater van der Waals (VDW) forces (*intermolecular is not sufficient*)

[1]

due to larger no of electrons

[1]

(ii) CCl_4 does not react with water

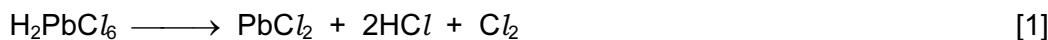
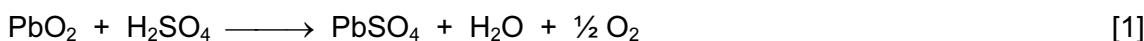
[1]

CCl_4 unreactive due to no d-orbitals

[1]

GeCl_4 and PbCl_4 hydrolyse/react

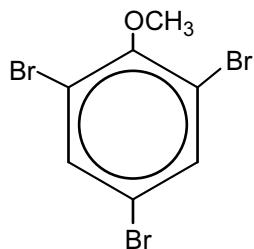
[1]

[1]

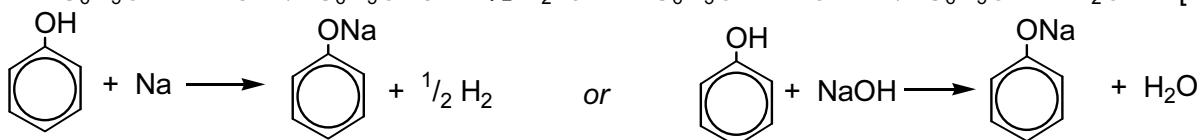
[7]

Page 5	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012	Syllabus 9701	Paper 43
--------	--	------------------	-------------

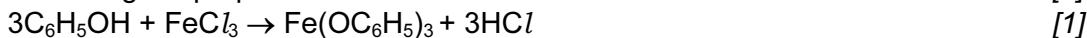

(b) (i) B is PbSO_4 and C is PbCl_2 [1]

[5 max 4]

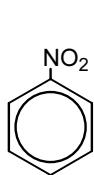
[Total: 11]


5 (a) (i)

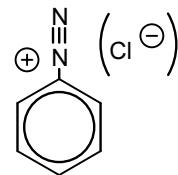
[1]


(ii) Na metal or NaOH [1]

Fizzes/gas given off with phenol or phenol dissolves (anisole doesn't) [1]


(neutral) iron(III) chloride [1]

Solution goes purple/violet [1]



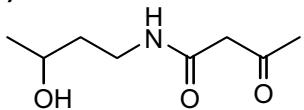
[4]

(b) (i)

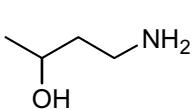
D

E

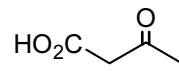
[1] + [1]

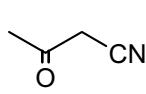

(ii) step 2: $\text{Sn} + \text{HCl}$ NOT $\text{LiAlH}_4, \text{NaBH}_4$ [1]
conc. + reflux (*warm is insufficient*) [1]

step 4 is conditional of structure E


step 4: warm + in H_2O

[1]
[5 max 4]


(c) (i)


F

G

H

J

F must be an **amide**

[4]

(ii) reaction 1: $\text{H}_2 + \text{Ni}$ or LiAlH_4
reaction 2: heat + aqueous HCl

[1]

[1]

[6]

[Total: 14]

6 (a) (i) Condensation [1]

(ii) ala-ala, gly-gly, ala-gly [2]
[3]

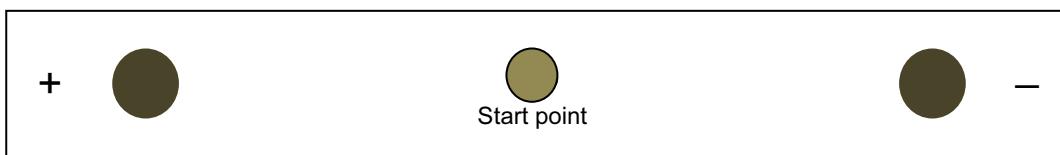
(b) (i) Correct sugar-phosphate backbones
(with **two sugars and one phosphate attached**) [1]

C – G pair correct **or** A – T pair correct [1]

deoxyribose label **and** all bases coming from sugars [1]

(ii) Replication would be slower/difficult
because the DNA/strands could not be separated [1]
[4]

(c) (i) Some amino acids have more than one (triplet) code [1]


(ii) loss/disruption of ionic bonding/hydrogen bonding [1]

(iii) There would be a potential loss of all tertiary structure
or
frameshift – deletion of a base changes protein structure [1]
[3]

[Total: 10]

Page 7	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012	Syllabus 9701	Paper 43
--------	--	------------------	-------------

7 (a)

Glutamic acid

Glycine

Lysine

Glutamic acid between + and start point

[1]

Lysine between – and start point

[1]

Glycine at, or very close to, start point

[1]

[3]

(b) (i) Ratio of the concentration of a solute in each of two solvents

or equilibrium constant representing the distribution of a solute between two solvents. [1]

(ii) illustration of some method of getting into our body via the food chain [1]

They dissolve preferentially in fats/oils

[1]

[3]

(c) (i) $156 = C_3H_6^{35}Cl^{79}Br^+$

[1]

$158 = C_3H_6^{37}Cl^{79}Br^+$

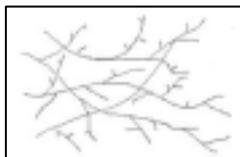
[1]

$158 = C_3H_6^{35}Cl^{81}Br^+$

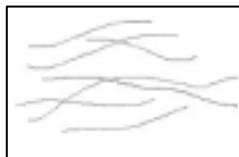
[1]

$160 = C_3H_6^{37}Cl^{81}Br^+$

[1]


(ii) $m/e = 15$ Species = CH_3^+

[1]


[5 max 4]

[Total: 10]

8 (a)

LDPE

HDPE

minimum of 2 chains suitable sketches [1]

(The close packing of unbranched side chains means)

LDPE **more space** between the chains/polymers or HDPE less empty space between the chains [1]

[2]

(b) van der Waals' (VDW) forces
are weaker

[1]

[1]

[2]

(c)

Addition OR	condensation
requires C=C/double bond	does not need C=C/double bond
uses the same functional group	needs two different functional groups
same general (empirical) formula as monomer	different formula
no loss of small molecule/H ₂ O/HCl	small molecule /H ₂ O/HCl is formed

Any two differences

[1]

[2]

(d) (i) (through its long chain of) delocalised electrons/mobile electrons
free electrons is not sufficient [1]

(ii) planar

[1]

the π bonds/p-orbitals overlap (with each other)

[1]

(iii) C₈H₆
C₄H₃

[2]

[5 max 4]

[Total: 10]