

MARK SCHEME for the May/June 2013 series

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	22

1 (a) a base is a proton acceptor **or**
 a lone pair donor
 a weak base is not fully ionised
 e.g. $\text{NH}_3 + \text{H}_2\text{O} \rightleftharpoons \text{NH}_4^+ + \text{OH}^-$ **or**
 $\text{B} + \text{H}^+ \rightleftharpoons \text{BH}^+$ **or** equivalent
 \rightleftharpoons is necessary (1) [3]

(b) (i) **stated** pressure greater than 1 atm up to 5 atm (1)
stated temperature 400 to 500 °C (1)
named catalyst V_2O_5 /vanadium(V) oxide (1)

(ii) SO_3 is dissolved in concentrated H_2SO_4
and then diluted with water
not 'SO₃ dissolved in water' as the only statement (1) [4]

(c) (i) **with concentrated sulfuric acid**
 $\text{ClCH}_2\text{CH}=\text{CHCl}$ (1)

with ammonia
 $\text{H}_2\text{NCH}_2\text{CH}(\text{OH})\text{CH}_2\text{NH}_2$ (1)

(ii) nucleophilic substitution (1) (1) [4]

[Total: 11]

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	22

2 (a) (i) $n(\text{H}_2\text{SO}_4) = \frac{25.0 \times 1.00}{1000} = 0.025 \text{ mol}$ (1)

(ii) $n(\text{NaOH}) = \frac{16.2 \times 2.00}{1000} = 0.0324 \text{ mol}$ (1)

(iii) $n(\text{H}_2\text{SO}_4) \text{ reacting with NaOH} = \frac{0.0324}{2} = 0.0162 \text{ mol}$ (1)

(iv) $n(\text{H}_2\text{SO}_4) \text{ reacting with NH}_3 = 0.025 - 0.0162 = 0.0088 \text{ mol}$ (1)

(v) $n(\text{NH}_3) \text{ reacting with H}_2\text{SO}_4 = 2 \times 0.0088 = 0.0176 \text{ mol}$ (1)

(vi) $n(\text{NaNO}_3) \text{ reacting} = n(\text{NH}_3) \text{ produced} = 0.0176 \text{ mol}$ (1)

(vii) mass of NaNO_3 that reacted = $0.0176 \times 85 = 1.496 \text{ g}$ (1)

(viii) $\% \text{ of NaNO}_3 = \frac{1.496 \times 100}{1.64} = 91.2195122 = 91.2$ (1)

give one mark for the correct expression (1)

give one mark for answer given as 91.2 – i.e to 3 sig. fig. (1)

allow ecf where appropriate

[9]

(b) $\text{NaNO}_3 +5 \text{ and } \text{NH}_3 -3$ both required (1) [1]

[Total: 10]

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	22

3 (a) penalise (-1) the use of names of elements or formulae of compounds

- (i) Ca (1)
- (ii) O or N or C (1)
- (iii) C or N or S or F or Cl or Br (1)
- (iv) Si or Ge or B (1)
- (v) Al or Si or P or S or H (1)
- (vi) Al (1) [6]

(b) (i)

element	Na	Mg	Al	Si	P	S
oxide	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅ /P ₄ O ₁₀ or P ₂ O ₃ /P ₄ O ₆	SO ₂
flame	yellow or orange	white	white	white	white or yellow	blue

formula of oxide (1)
colour of flame (1)

(ii)

chloride	NaCl	MgCl ₂	AlCl ₃ or Al ₂ Cl ₆	SiCl ₄	PCl ₃ or PCl ₅	SCl ₂ or S ₂ Cl ₂	
pH	7	6.5 to 6.9	1 to 4				

formula of chloride (1)
pH of solution formed (1) [4]

(c) (i)

(1)

(ii) intermolecular forces/van der Waals' forces

are stronger or greater in ICl (1)

ICl has most electrons or

has the largest permanent dipole (1)

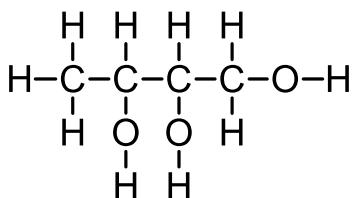
(iii) ICl

greatest difference in electronegativity is between I and Cl (1)

(1) [5]

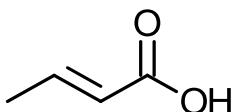
[Total: 15]

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	22


4 (a)

A	Br ₂ in an inert organic solvent	CH ₃ CHBrCHBrCH ₂ OH
B	PCl ₅	CH ₃ CH=CHCH ₂ Cl
C	H ₂ and Ni catalyst	CH ₃ CH ₂ CH ₂ CH ₂ OH
D	NaBH ₄	NO REACTION
E	K ₂ Cr ₂ O ₇ /H ⁺ , heat under reflux	CH ₃ CH=CHCO ₂ H

give one mark for each correct answer


(5 × 1) [5]

(b)

(1) [1]

(c)

correct C₄ with C=C in position 2

(1)

accept *cis* form

(1)

correctly shown -CO₂H

(1)

allow ecf on candidate's answer to E in (a)

[2]

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	22

(d) (i) reagent	observation		
2,4-dinitrophenylhydrazine	red/orange ppt.		
Tollens' reagent	silver mirror or grey ppt. or black ppt.		
Fehling's reagent	brick red ppt.		
correct reagent observation		(1) (1)	
(ii) reduction or nucleophilic addition		(1)	[3]

(e)
$$\begin{aligned} \text{C : H : O} &= \frac{73.7}{12} : \frac{12.3}{1} : \frac{14.0}{16} \\ &= 6.14 : 12.3 : 0.875 \\ &= 7.01 : 14.1 : 1 \end{aligned} \quad (1)$$

gives $\text{C}_7\text{H}_{14}\text{O}$
formula must be given (1) [2]

[Total: 13]

Page 7	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	22

5 (a) $\text{C}_4\text{H}_8\text{O}_2$ (1) [1]

(b)

$\text{HCO}_2\text{CH}_2\text{CH}_2\text{CH}_3$	$\text{HCO}_2\text{CH}(\text{CH}_3)_2$
W	X
$\text{CH}_3\text{CO}_2\text{CH}_2\text{CH}_3$	$\text{CH}_3\text{CH}_2\text{CO}_2\text{CH}_3$
Y	Z

give one mark for each correct answer (4 × 1) [4]

(c) (i) —CHO or aldehyde absent (1)
 (ii) >CO or carbonyl absent (1)
 (iii) —CO₂H or carboxylic acid present (1) [3]

(d) (i) CH₃CO₂H or ethanoic acid (1)
 (ii) Y above (1) [2]

(e) none – no chiral carbon atoms present (1) [1]

[Total: 11]