

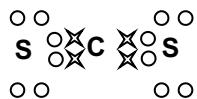
## MARK SCHEME for the May/June 2013 series

### 9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.


Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

| Page 2 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9701     | 23    |

1 (a) (i)

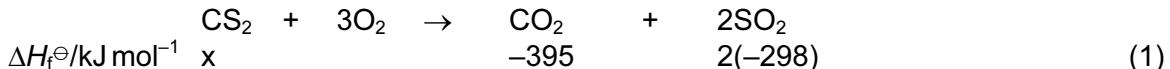


S atom has 6 **and** C atom has 4 electrons (1)

S=C double bonds (4 electrons) clearly shown (1)

(ii) linear **and** 180° (1) [3]

(b) (i)  $\text{CS}_2 + 3\text{O}_2 \rightarrow \text{CO}_2 + 2\text{SO}_2$  (1)


(ii) enthalpy change when 1 mol of a substance (1)

is burnt in an excess of oxygen/air

**or** is completely combusted

under standard conditions (1) [3]

(c)



$$\Delta H_{\text{reaction}} = -395 + 2(-298) - x = -1110 \text{ kJ mol}^{-1} \quad (1)$$

$$\text{gives } x = -395 + (-596) + 1110 = +119 \text{ kJ mol}^{-1} \quad (1) \quad [3]$$

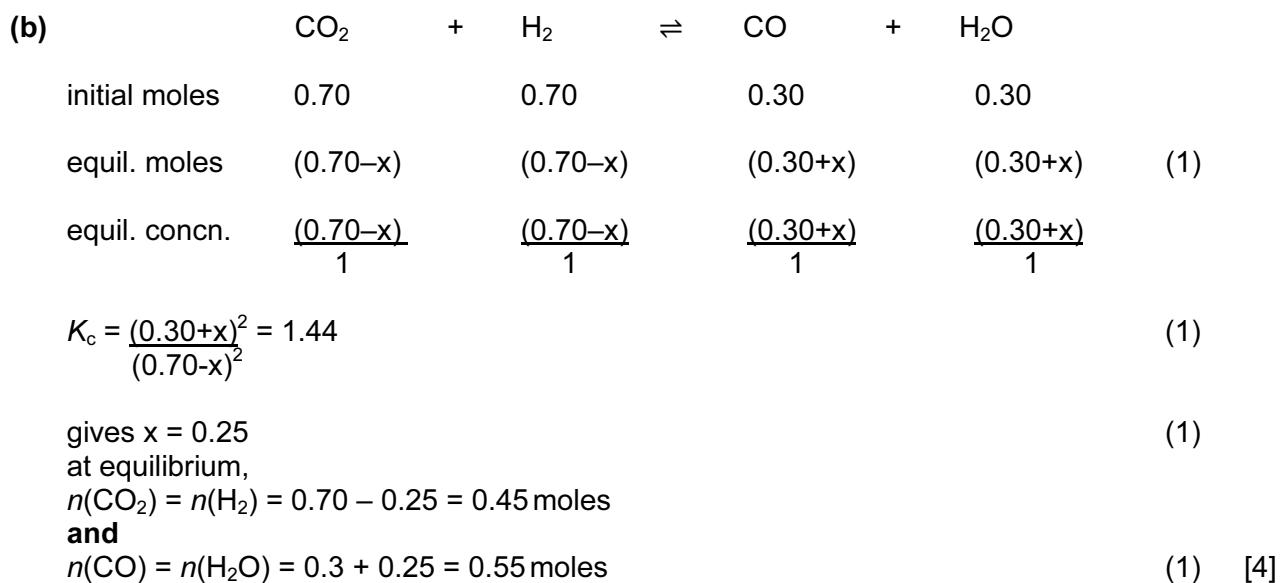
(d) (i)  $\text{CS}_2 + 2\text{NO} \rightarrow \text{CO}_2 + 2\text{S} + \text{N}_2$

**or**



correct products (1)

correct equation (1)


(ii) from -2 to 0 **both** required (1) [3]

**[Total: 12]**

| Page 3 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9701     | 23    |

2 (a) (i) if the conditions of a system in equilibrium are changed (1)  
 the position of equilibrium moves so as to reduce that change (1) [2]

(ii) lower temperature (1)  
 because the forward reaction is exothermic (1)  
 higher pressure (1)  
 because the forward reaction shows a reduction in volume  
 or  
 there are fewer molecules/moles on RHS of equilibrium (1) [4]



[Total: 10]

| Page 4 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9701     | 23    |

3 (a) (i) He or Ne or Ar or Kr (1)

(ii) P or As (1)

(iii) Br (1)

(iv) Na allow Ar (1)

(v) Si (1)

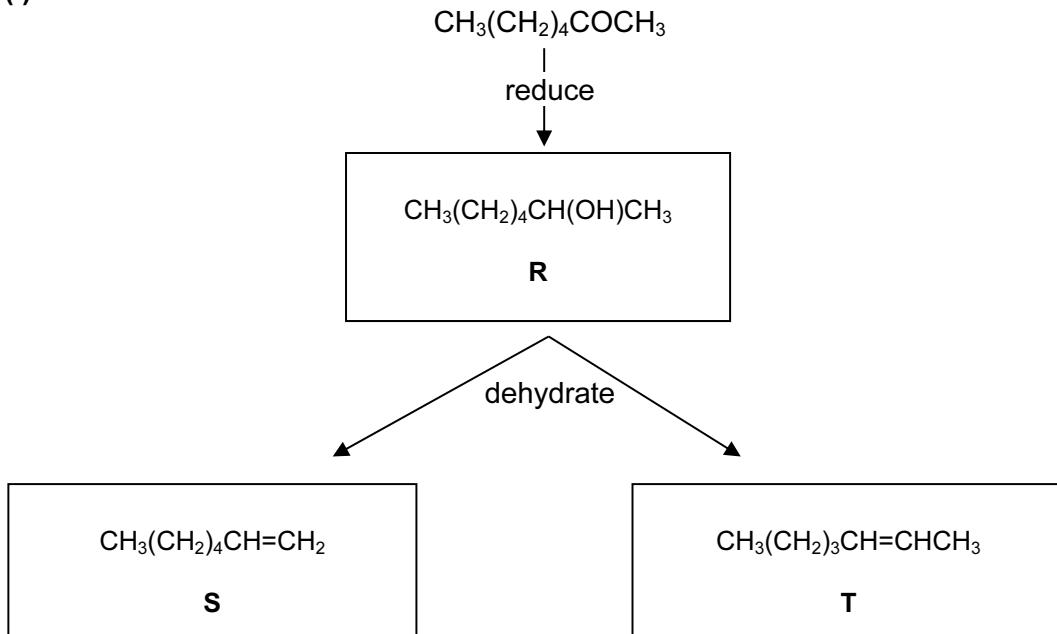
(vi) P allow Si (1)

(vii) Cl or F or Br (1) [7]

(b) (i) any two from  $P_4O_6$ ,  $SO_2$  and  $Cl_2O_7$  (1+1)

(ii)  $Al_2O_3$  or  $SiO_2$  (1)

(iii)  $MgSO_3$  (1) [4]


(c) (i) Si is giant molecular/giant covalent or  
P, S, and Cl are simple molecular (1)

(ii) the molecules are  $S_8$ ,  $P_4$ ,  $Cl_2$  (1)  
larger molecules have more electrons (1)  
and hence greater van der Waals' forces (1) [4]

[Total: 15]

|        |                                |          |       |
|--------|--------------------------------|----------|-------|
| Page 5 | Mark Scheme                    | Syllabus | Paper |
|        | GCE AS/A LEVEL – May/June 2013 | 9701     | 23    |

4 (a) (i)



one mark for each correct compound, **R**, **S** and **T**

allow correct *cis* and *trans* versions of compound **T** for 2 marks (3 × 1)

(ii) reduction

$\text{NaBH}_4$  or  $\text{LiAlH}_4$  or  $\text{H}_2/\text{Ni}$  or  $\text{Na/C}_2\text{H}_5\text{OH}$  (1)

dehydration

$\text{P}_4\text{O}_{10}/\text{P}_2\text{O}_5$  or  $\text{H}_3\text{PO}_4$  or conc.  $\text{H}_2\text{SO}_4$  or  $\text{Al}_2\text{O}_3$  (1) [5]

(b)

|                                              |                                                         |
|----------------------------------------------|---------------------------------------------------------|
| Tollens' reagent                             | NO REACTION                                             |
| HCN                                          | $\text{CH}_3(\text{CH}_2)_4\text{C(OH)CH}_3$<br> <br>CN |
| $\text{K}_2\text{Cr}_2\text{O}_7/\text{H}^+$ | NO REACTION                                             |

one mark for each correct answer (3 × 1) [3]

| Page 6 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9701     | 23    |

(c)  $\text{Na}_2\text{CO}_3$  or  $\text{NaHCO}_3$  effervescence/colourless gas  
 or  
 Na colourless gas  
 or  
 $\text{PCl}_3/\text{PCl}_5$  etc. steamy fumes  
 or  
 $\text{C}_2\text{H}_5\text{OH}/\text{conc. H}_2\text{SO}_4$  sweet smell of ester  
 or  
 $\text{K}_2\text{Cr}_2\text{O}_7/\text{H}^+$  orange solution becomes green

correct reagent (1)

correct observation (1) [2]

[Total: 10]

| Page 7 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9701     | 23    |

5 (a) (i)  $\text{CH}_2=\text{CHCO}_2\text{H}$  (1)

(ii)  $\text{BrCH}_2\text{CHBrCH}_2\text{OH}$  (1)

(iii) product is  $\text{HOCH}_2\text{CH(OH)CH}_2\text{OH}$   
correct addition across  $>\text{C}=\text{C}<$  (1)  
original  $-\text{CH}_2\text{OH}$  remains (1)

(iv)  $\text{HO}_2\text{CCO}_2\text{H}$  (1) [5]

(b) (i) nucleophilic substitution (1)

(ii) oxidation (1) [2]

(c) (i) **step I**  
 $\text{H}_2$  (1)  
heat with Ni catalyst (1)

**step II**  
acidified  $\text{K}_2\text{Cr}_2\text{O}_7$  (1)  
heat **or** distil off product (1)

(ii) structural isomerism  
**or**  
functional group isomerism (1) [5]

(d) **both** oxidation **and** reduction have occurred **or**  
disproportionation has taken place (1) [1]

[Total: 13]